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Introduction

 Drones are popular
— Environmental monitoring, deI|very, emergency serV|ces

Drone revealing fire damage to Notre Dame

 They pose threats

— Collision hazards, privacy violation, illegal reconnaissance,
smuggling, terrorism
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Introduction

 Response to these threats
— Detection, Tracking, Characterization, Classification
— then — acting (interception / destruction / jamming)

e All these tasks can be done based on radar micro-

Doppler patterns

— Long range sensing, stable in most weather and light
conditions, provides range and velocity information

« What do we need to know for about drones?

— It is necessary to understand the relations between the
observed micro-Doppler pattern, radar parameters and
properties of specific drone’s rotating parts:

— Algorithms for aforementioned sensing tasks...
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Objectives of the study

* To develop an approach that will give a possibility to study
the relation between the micro-Doppler pattern, radar
parameters

— Operational frequency
— Pulse Repetition Frequency (PRF)
— Coherent Processing Interval (CPI)

properties of specific drone’s rotating parts:

— number and length of blades in propeller,

— number of propellers/rotors,

— rotors rotation speed and synchronization

and observed scene

— Drone’s motion (hovering or moving) and orientation
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State of the art

« Data collection methods in previous researches
— Simulated data
— Indoor measurements
— Outdoor measurements
 Problems
— Time consuming
— Constant synchronization of propellers (hovering only)
— Only for a particular drone (drones collection?)

— Mostly studied for the short CPI, when the propeller’s
rotation period is much longer this CPI
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Short and Long Coherent Processing Intervals

Short CPI << Rotation Period

Micro-Doppler signature due to radial velocity

Long CPI ~ Rotation Period

DJI Matrix-600, PARSAX radar, HH polarisation,
Line spectrum Range 9 km, 3.315 GHz, PRI = 240us, B=16.8MHz,
PRF =4.17 kHz, CPI =0.98 s, SNR ~ 20 dB

- D e I ft Oleg A. Krasnov and Alexander G. Yarovoy "Radar Micro-Doppler of Wind Turbines: Simulation and Analysis Using Slowly Rotating Linear Wire Structures", 7
International Journal of Microwave and Wireless Technologies, 7(3-4), 2015, pp 459-467



Our proposed simulation approach

Models
_ One rotor/propeller
Precise EM
(FEKO) Rotation Radar: Drone’s
Frequenc Geometry,
(thin-wires) dependence of : :
blade/propeller Orientation
Measurements Scatt_e':ing
Anechoic CoeﬁICIent Time Sam Iln Coherent
Chamber dependence piing sSum
at Drone’s
Long CPI Short CPI Phase
e ;/ S Doppler FFT as Center
Function of Time




Models

Precise EM
(FEKO)

Simple
(thin-wires)

Measurements

Anechoic
Chamber

]
TUDelft

Our proposed simulation approach

« Study the importance of input data quality (the choice of
model source) on final micro-Doppler pattern

* To adapt simple thin-wires model for drone geometry and
to study:

— Efficiency of simplified mathematical model

— Flexibility of simulation results as function of drone’s
geometry, propellers number and synchronization in
rotation frequencies and initial positions, radar settings
(operational frequency, PRF, CPI)

— New scenarios: low SNR => long CPI
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Outline

» Single propeller characterization
— models and measurements
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Radar signal scattering on single propeller

e Anechoic chamber measurements
— HH polarization

I | |
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DJI R2170 Propeller under test

Propeller under test
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I8Rotatable platform
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Aluminium plate has been
used as a reference

'i"U Delft Anechoic chamber setup
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Radar signal scattering on single propeller

 FEKO software simulations
— Far field, plane wave, HH polarization
— Carbon fiber material

3D propeller model under simulation
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Radar signal scattering on single propeller
« RCS of single propeller — results from DUCAT and FEKO
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Radar signal scattering on single propeller

* Micro-Doppler pattern of a rotating propeller
Doppler processing of the rotating propeller scattering coefficient
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Radar signal scattering on single propeller

» Adaptation for drone’s propeller at thin-wire simplified EM model
Describe propeller’'s geometry structure in horizontal plane

EM reflection from thin-wire model of
propeller

Propeller R2170
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Radar signal scattering on single propeller

 RCS of a single propeller — from thin-wire model
Thin-wire model comparlson with the measurements and FEKO sim
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Radar signal scattering on single propeller

 micro-Doppler patterns of a single propeller

— Thin-wire model comparison with the measurements
Anechoic Chamber measurement Thin-wire model
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Radar signal scattering on single propeller

— Developed simplified representation of the propeller
geometry as a bunch of thin wires with very low
computational complexity of electromagnetic simulations

— The comparison with measurements in X-band and S-band
show

* in case of short CPI there are visible differences in
micro-Doppler patterns — better to use for analysis pre-
simulated or measured look-up tables

» For the case of the long CPI only line spectrum
frequency components are visible and their relative
amplitudes are well reproduced by simple thin-wires
model
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Outline

e Multi-propeller drone simulations
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PARSAX radar
(fc = 3.315 GHz
PRF = 1kHz)

Hexa-copter
(hovering)

Range 9 km
EWI building

Radar signal scattering on multi-propeller drone

 m-D pattern of a multi-propeller drone
— Open air measurements by the PARSAX radar
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Radar signal scattering on multi-propeller drone

* Thin-wire model - describes the multi-propeller drone’s geometry
structure in horizontal plane via coherent summation of individual

propellers, phase shifted to the drone’s phase center:
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Radar signal scattering on multi-propeller drone

« The comparison of the M600 hexa-copter’s micro-Doppler patterns

measured with real radar and simulated with thin-wire model
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Radar signal scattering on multi-propeller drone

* The proposed model of a multi-propeller drone gives a
possibility
— To synthesis and analyze micro-Doppler patterns of

drones with different numbers and configurations of
multiple propellers

— To simulate and analyze the influence of observation
angles and propeller synchronization on resulting
micro-Doppler pattern

— The simulation results show good agreement with
experimental measurements in long distance (low
SNR and, as result, requested long CPI)
circumstances
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Conclusion

* Has been presented and illustrated a general approach for multi-propeller
drones micro-Doppler patterns simulation based on modelled or
experimentally measured angular dependencies of a single propeller
scattering coefficients

*  Low computational complexity simplified thin-wire model has been proposed
to simulate multi-propeller drones micro-Doppler patterns as a function of
radar parameters, drone’s geometry and rotating propellers variables.

* lts validation by the comparison with real radar measurements at S-band
shows good agreement in observed and simulated micro-Doppler patterns in
case of radar observations with long CPI in terms of propeller rotation period.

*  For more general cases can be used the proposed simulations approach that
uses pre-defined (measured or precisely EM modelled) look-up tables of
single propeller angular dependencies of scattering coefficient. It can be done
for different polarizations and frequencies...
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The usage of this model for the recognition §%
of drones with different number of rotors
will be illustrated within our presentation [ 3
on the EURAD-2019 conference in Paris




