

Simulation of Radar Micro-Doppler Patterns for Multi-Propeller Drones

Yefeng Cai, **Oleg Krasnov**, Alexander Yarovoy Delft University of Technology

RADAR-2019, Toulon, France

Outline

- Introduction
- General Approach
- Single propeller characterization – models and measurements
- Multi-propeller drone simulations
- Conclusion

Introduction

- Drones are popular
 - Environmental monitoring, delivery, emergency services

Drone revealing fire damage to Notre Dame

- They pose threats
 - Collision hazards, privacy violation, illegal reconnaissance, smuggling, terrorism

Introduction

- Response to these threats
 - Detection, Tracking, Characterization, Classification
 - then acting (interception / destruction / jamming)
- All these tasks can be done based on radar micro-Doppler patterns
 - Long range sensing, stable in most weather and light conditions, provides range and velocity information
- What do we need to know for about drones?
 - It is necessary to understand the relations between the observed micro-Doppler pattern, radar parameters and properties of specific drone's rotating parts:
 - Algorithms for aforementioned sensing tasks...

Objectives of the study

- To develop an approach that will give a possibility to study the relation between the micro-Doppler pattern, radar parameters
 - Operational frequency
 - Pulse Repetition Frequency (PRF)
 - Coherent Processing Interval (CPI)

properties of specific drone's rotating parts:

- number and length of blades in propeller,
- number of propellers/rotors,
- rotors rotation speed and synchronization and observed scene

State of the art

- Data collection methods in previous researches
 - Simulated data
 - Indoor measurements
 - Outdoor measurements
- Problems
 - Time consuming
 - Constant synchronization of propellers (hovering only)
 - Only for a particular drone (drones collection?)
 - Mostly studied for the short CPI, when the propeller's rotation period is much longer this CPI

Short and Long Coherent Processing Intervals

DJI Matrix-600, PARSAX radar, HH polarisation, Range 9 km, 3.315 GHz, PRI = 240us, B=16.8MHz, PRF = 4.17 kHz, CPI = 0.98 s, SNR ~ 20 dB

Oleg A. Krasnov and Alexander G. Yarovoy "Radar Micro-Doppler of Wind Turbines: Simulation and Analysis Using Slowly Rotating Linear Wire Structures", 7 International Journal of Microwave and Wireless Technologies, 7(3-4), 2015, pp 459-467

Our proposed simulation approach

Our proposed simulation approach

Models

Precise EM (FEKO)

Simple (thin-wires)

Measurements Anechoic Chamber

- Study the importance of input data quality (the choice of model source) on final micro-Doppler pattern
- To adapt simple thin-wires model for drone geometry and to study:
 - Efficiency of simplified mathematical model
 - Flexibility of simulation results as function of drone's geometry, propellers number and synchronization in rotation frequencies and initial positions, radar settings (operational frequency, PRF, CPI)
 - New scenarios: low SNR => long CPI

Outline

- Introduction
- General Approach
- Single propeller characterization – models and measurements
- Multi-propeller drone simulations
- Conclusion

• Anechoic chamber measurements

HH polarization

Anechoic chamber setup

- FEKO software simulations
 - Far field, plane wave, HH polarization
 - Carbon fiber material

3D propeller model under simulation

• RCS of single propeller – results from DUCAT and FEKO

-10

-20

CCS [dBm2] -40

-50

-60

Propeller RCS

Propeller RCS at 3 GHz

DUCAT Anechoic Chamber

• Micro-Doppler pattern of a rotating propeller

Doppler processing of the rotating propeller scattering coefficient

Adaptation for drone's propeller at thin-wire simplified EM model

Describe propeller's geometry structure in horizontal plane

EM reflection from thin-wire model of propeller

$$\sum_{b=1}^{B} E_{b}^{blade}(t, r_{p}, \theta_{b,w}, l_{b,w}) \sim \sum_{b=1}^{B} E_{b}^{blade}(t, r_{p}, \theta_{b,w}, l_{b,w})$$

$$= \sum_{b=1}^{B} \sum_{w=1}^{W} E_{b,w}^{wire}(t, r_{p}, \theta_{b,w}, l_{b,w})$$

$$= \sum_{b=1}^{B} \sum_{w=1}^{W} \int_{0}^{l_{b,w}} j\eta \frac{ke^{-jkr_{p}}}{4\pi r_{p}}$$

$$\times E_{r_{p}}^{in}(t) \sin^{2}(\theta_{b,w} + \Omega t)$$

$$\times e^{j2ky'_{b,w}cos(\theta_{b,w} + \Omega t)} dy'_{b,w}$$

Oleg A. Krasnov and Alexander G. Yarovoy "Radar Micro-Doppler of Wind Turbines: Simulation and Analysis Using Slowly Rotating Linear Wire Structures", 15 International Journal of Microwave and Wireless Technologies, 7(3-4), 2015, pp 459-467

• RCS of a single propeller – from thin-wire model

Thin-wire model comparison with the measurements and FEKO sim

- micro-Doppler patterns of a single propeller
 - Thin-wire model comparison with the measurements

- Developed simplified representation of the propeller geometry as a bunch of thin wires with very low computational complexity of electromagnetic simulations
- The comparison with measurements in X-band and S-band show
 - in case of short CPI there are visible differences in micro-Doppler patterns – better to use for analysis presimulated or measured look-up tables
 - For the case of the long CPI only line spectrum frequency components are visible and their relative amplitudes are well reproduced by simple thin-wires model

Outline

- Introduction
- General Approach
- Single propeller characterization – models and measurements
- Multi-propeller drone simulations
- Conclusion

Radar signal scattering on multi-propeller drone m-D pattern of a multi-propeller drone

- Open air measurements by the PARSAX radar

Radar signal scattering on multi-propeller drone

 Thin-wire model - describes the multi-propeller drone's geometry structure in horizontal plane via coherent summation of individual propellers, phase shifted to the drone's phase center:

Geometry of multi-propeller drone (quad-copter for example)

Radar signal scattering on multi-propeller drone

 The comparison of the M600 hexa-copter's micro-Doppler patterns measured with real radar and simulated with thin-wire model

Radar signal scattering on multi-propeller drone

- The proposed model of a multi-propeller drone gives a possibility
 - To synthesis and analyze micro-Doppler patterns of drones with different numbers and configurations of multiple propellers
 - To simulate and analyze the influence of observation angles and propeller synchronization on resulting micro-Doppler pattern
 - The simulation results show good agreement with experimental measurements in long distance (low SNR and, as result, requested long CPI) circumstances

Conclusion

- Has been presented and illustrated a general approach for multi-propeller drones micro-Doppler patterns simulation based on modelled or experimentally measured angular dependencies of a single propeller scattering coefficients
- Low computational complexity simplified thin-wire model has been proposed to simulate multi-propeller drones micro-Doppler patterns as a function of radar parameters, drone's geometry and rotating propellers variables.
- Its validation by the comparison with real radar measurements at S-band shows good agreement in observed and simulated micro-Doppler patterns in case of radar observations with long CPI in terms of propeller rotation period.
- For more general cases can be used the proposed simulations approach that uses pre-defined (measured or precisely EM modelled) look-up tables of single propeller angular dependencies of scattering coefficient. It can be done for different polarizations and frequencies...

Questions?

The usage of this model for the recognition of drones with different number of rotors will be illustrated within our presentation on the EuRAD-2019 conference in Paris

TUDelft