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Abstract — This paper proposes to perform radar recognition
of multi-propeller drones using micro-Doppler linear spectral
pattern in long Doppler coherent processing interval (CPI)
circumstances. It focuses on the investigation of the influence
of geometry design and motion variables, such as blade
number, blade shape, drone’s design geometry and propeller
synchronisation, on the micro-Doppler spectral pattern. We
propose suitable scalar features for the characterisation of these
patterns measured within a long (relatively to propellers rotation
period) CPI. A thin-wire model was used to simulate drones
micro-Doppler spectra for various input variables. Proposed
features are extracted from the simulated micro-Doppler spectra
for further processing in a support vector machine (SVM),
with the purpose of demonstrating the radar recognition of
multi-propeller drones based on these features.
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I. INTRODUCTION

Last years multi-propeller drones have widely spread to
civil and industrial domains. The improper use of them harms
flight safety and civil security. To evaluate and eliminate
these threats, radar systems are used for the detection and
classification of such targets.

Traditionally, the analysis of micro-Doppler patterns of
radar data has been used to classify drones. In [1], the
authors merged a drone micro-Doppler image with its
cadence-velocity diagram and performed classification using
convolutional neural networks (CNN). In that work, the link
between the micro-Doppler images, drone’s motion properties
and its influence on classification results were undisclosed.
De Wit et al. in [2] extracted micro-Doppler features
using the singular value decomposition (SVD) technique.
These features of SVD components were proposed for
characterisation of the periodic quasi-sinusoidal micro-Doppler
patterns. In [3], the author extracted physical features from
time-velocity diagrams, i.e. micro-Doppler image, such as
base velocity, total Doppler bandwidth, and cadence frequency.
In these works, micro-Doppler features were based on clear
periodic quasi-sinusoidal patterns. However, the periodic
micro-Doppler pattern presenting the propeller rotation in
detail is a result of a Doppler CPI much shorter than propeller
rotation period, so that in each time interval of integration the
propellers orientation angles do not change too much.

Drone’s micro-Doppler linear spectral pattern is commonly
observed by radar systems with low pulse repetition frequency
(PRF) and/or high Doppler resolution. In these systems, to

achieve a good signal-to-noise ratio (SNR), long CPI equal
to several propeller rotation periods is used for Doppler
processing, smearing periodic micro-Doppler pattern into
linear pattern [4]. It is important to study and understand the
relation between the observed micro-Doppler linear patterns
and the characteristics of multi-propeller drones, radar signals
and processing configurations. For the efficient implementation
of radar recognition, it is also important to propose a set of
suitable scalar features to characterise the micro-Doppler linear
patterns, which can be used in recognition algorithms.

The paper is organized as follow. Section II presents
the micro-Doppler linear spectral patterns of multi-propeller
drones simulated by a thin-wire model in relation to the input
variables of drone parameters. In Section III, micro-Doppler
features are proposed based on the understanding of the input
variables’ influence. Section IV applies the proposed features
to drone classification within simulated scenarios of different
drones in various flight modes. Section V concludes the paper
and formulate plans for future work.

II. INFLUENCE OF DESIGN AND MOTION VARIABLES

In order to investigate the influence of drone’s design
and motion variables on micro-Doppler patterns, a thin-wire
model [4] that simply represents a propeller blade as two
thin wires was proposed to calculate the reflected on a
multi-propeller drone electromagnetic (EM) signal in time
domain (see Fig.1b). The phase of the reflected in the drone
propellers’ rotation plane signal is given by (1). Symbol ∼
indicates proportionality. Parameters η = 120π and k = 2π/λ
are the intrinsic impedance of air and the wavenumber of EM
signal. P , B and W are the numbers of propellers, blades per
propeller, and of thin wires per blade, correspondingly, in the
simplified model. Variables rp and r0 indicate the distance
from the pth propeller’s rotation centre and the the centre
of drone’s geometry design to an observation point. Element

Table 1. Input Variables of Drone Properties in Thin-Wire Simulations

Variable combination (a) (b) (c) (d) (e) (f)
Blade number B 2 3 2 2 2 2
Blade length l [m] 0.11 0.11 0.22 0.11 0.11 0.11
Prop. initial angle θ0 0 0 0 random 0 0
Prop. number P 4 4 4 4 6 4
Prop.velocity shift
(from 4000 rpm) 0 0 0 0 0 20%
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p,b,w is the length of infinitesimal dipole along the z-axis
at the distance z

′

p,b,w along the wth wire of the bth blade of
the pth propeller in the rotation plane. lp,b,w is the length of
this wire, and parameter θp,b,w(t) gives the rotation angle of
this wire at time t: θp,b,w(t) = θ0p,b,w + Ωpt as a function of
its angular velocity Ωp and initial angle θ0p,b,w relatively to the
LOS at time t = 0.
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(1)

Micro-Doppler patterns of specific drones were simulated
by applying short-time Fourier transform (STFT) to the
model-based signal series using corresponding input variables.
In the simulations, the geometry of a popular drone, DJI
Phantom 4 was taken as an example [5]. Its propeller blades
were simplified as two thin wires of 11.43 cm and 2.29 cm in
length, shifted of 15◦. The distances from the propeller rotation
centre to the centre of drone geometry design was set as 0.175
m, imitating the DJI Phantom 4 drone. The radar parameters
were set the same as for the PARSAX system [6], with
single carrier frequency fc=3.315 GHz, sampling frequency
fs=PRF=1 kHz, and CPI=512 ms for Doppler processing with
256 ms overlapped. These setups are quite common for S-band
radar systems.

Various combinations of other variables (see Table 1) were
used in the simulations, in order to discuss their influence on

(a)

(b)

Fig. 1. Thin wire model of propeller and multi-propeller drone used in
micro-Doppler pattern simulation: (a) propeller, (b) multi-propeller drone

Fig. 2. Simulated micro-Doppler pattern for the variables combination (a) in
Table 1

the simulated micro-Doppler patterns. In real practice, these
variables are related to drone types and flight attitudes. The
bottom row in Table 1 indicates the variety of propellers
rotation periods around the mean value of 15 ms in the
simulations. In this circumstance, the CPI is much longer than
the propeller rotation period, thus giving linear micro-Doppler
patterns of interest.

Fig.2 presents the normalised simulation result of
micro-Doppler pattern using variable combination (a) in Table
1. In this figure, the normalised magnitude of background noise
is about 0.5, while the micro-Doppler pattern peaks appearing
at several frequencies have the normalised magnitude close to
1. The pattern shown in Fig.2 can be further averaged over
the time interval of 1.5 seconds, during which the fluctuations
of the patterns observed in real open air scenario due to
air disturbance can be averaged. Such averaged over time
result of the micro-Doppler linear pattern in Fig.2 is shown
in Fig.3, together with the averaged over time results for other
combinations of variables (see Table 1) evaluated using the
same simulation method.

As can be seen from the comparisons of sub-figures in
Fig.3, the number of blades per propeller has a strong influence
on the micro-Doppler pattern, by introducing different
harmonic components of Doppler spectra. The length of blades
slightly influences the bandwidth of each Doppler pattern peak.
The change of rotation velocity due to blade length is small and
does not affect much the resulting pattern. The synchronisation
of propellers in rotation angle influences the micro-Doppler
pattern obviously, since the phase of backscattered signal
series is modulated by the angle shift between rotating
propellers, together with the geometry design of the drone,
eliminating the symmetry of micro-Doppler spectra around
zero frequency. The synchronisation of propellers in rotation
period complicates the micro-Doppler pattern by introducing
more velocity components, and the pattern shifts away from
zero frequency due to the radial velocity of the whole drone.
The number of propellers does not influence the micro-Doppler
pattern alone, but coupling with other variables.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Averaged over time simulated micro-Doppler spectra patterns using
various combinations of variables: (a)-(f) correspond to variable combination
(a)-(f) in Table 1

Overall, these variables of the blade properties, propeller
synchronisation and drone geometry design together influence
the linear micro-Doppler pattern in terms of the frequency
where pattern peaks appear and the relative magnitudes of the
peaks.

III. THE FEATURES FOR DRONES RECOGNITION

Understanding the influence of drone variables on the
micro-Doppler patterns in terms of the frequency and relative
magnitudes of micro-Doppler pattern’s peaks, it is a natural
choice to extract features from these two aspects. In the
averaged over time simulated micro-Doppler spectra, the
location of frequencies where pattern peaks appear f l1 is
proposed as a feature. f l1 is defined as a vector of s entries,
where s is the number of frequency points over Doppler
bandwidth. The ith entry of f l1 is set to be 1 if a linear
pattern peak appears at the ith frequency, or otherwise 0. The
mean fm2 , the standard deviation fsd3 and the entropy fe4 of
the magnitudes of pattern peaks are computed as additional
features, since these values illustrate the distribution of the
magnitudes of peaks linear pattern in a statistic way. Fig.4
shows the frequency points of value 1 in blue ellipse on the
horizontal axis and the magnitudes of pattern peaks in red
ellipse on the vertical axis.

Fig. 4. Magnitudes and frequencies of pattern peaks in the averaged over
time simulated micro-Doppler spectra pattern

The final feature list z is given as

z = [f l1 fm2 fsd3 fe4 ] (2)

and combines the proposed above features. They are derived
from the frequencies and magnitudes of the peaks of linear
micro-Doppler spectra, thus containing the information of
drone properties.

IV. AN EXAMPLE OF DRONES RECOGNITION

Support vector machines (SVM) separate different classes
of data with hyperplanes giving the largest margin and
demonstrate good results in micro-Doppler targets recognition
[7] [8]. In this article, a binary SVM classifier offered by
MATLAB R2017b as fitcsvm and predict functions was used
to validate the proposed micro-Doppler features, with the SVM
parameters of KernelFunction and Standardize set as rbf
and true. There are more sophisticated techniques to solve this
classification problem, but in this paper was selected a simple
method with the aim of validating the proposed features for
characterising linear micro-Doppler spectra patterns.

The data of linear micro-Doppler spectra averaged over the
time of 1.5 seconds was achieved from simulations of thin-wire
models of a quadcopter DJI Phantom 4 and a hexacopter
DJI Matrice 600 [9]. The variables of blade properties and
drone geometry designs were chosen according to real drones,
while the propellers were given random initial angles at
start time t=0. The drones were assumed in hovering and
maneuvering flight attitudes with propellers synchronous and
asynchronous in velocity. In maneuvering flight attitudes, the
drones were supposed moving radially towards the radar Tx/Rx
antennas, with half of the propellers rotating faster than the
rest. The velocity difference varied randomly within ±50%
of the standard rotation velocity. In the simulations, radar
parameters were set the same as in the PARSAX system.
Fig.5 illustrates the data set of the averaged over time linear
micro-Doppler spectra patterns simulated for these drones
and flight attitudes. For each simulation result, the proposed
features were extracted and used in the SVM classifier, and
40% of the total data were used to train the SVM classifier,
while the rest 60% - for tests.
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Fig. 5. Simulated data set of micro-Doppler linear spectra: two drones in two flight attitudes

(a) (b)

Fig. 6. Results of drone recognition accuracy using proposed features on
simulated linear micro-Doppler spectra patterns: (a) Hovering flight attitude,
(b) Maneuvering flight attitude

Fig.6 summarises the classification results. The SVM
gives good classification accuracy using the proposed features.
Maneuvering flight attitude achieves slightly lower accuracy
due to additional variables of propellers synchronisation in
velocity. The results validate that the proposed features
are appropriate to characterise linear micro-Doppler spectra
patterns in long CPI circumstances.

V. CONCLUSIONS

In this paper, the influence of drone’s parameters, such
as blade properties, propellers synchronisation and drone
geometry design, on the micro-Doppler linear spectra were
investigated using thin-wire model simulations for a long
CPI circumstances. Based on the observed frequency peaks
amplitudes and locations in the micro-Doppler linear spectra
were proposed efficient features for the recognition of drones.
Their efficiency has been validated using good classification
results for the simulated quadcopter and hexacopter data.
Applications of the proposed features on the real data

of flying drones observed by radar systems will be a
following research step in future, with the aim of confirming
these features’ robustness under different real circumstances,
including different types of drones, flight scenarios and radar
setups, in order to perform the detection and recognition of
multi-propeller drone using radar systems with low/medium
PRF and long CPI.
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