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Abstract — In this paper, the problem of on-the-fly estimation
of the radar state (self-diagnostics) is considered. We propose
to use repetitive objects of the road infrastructure, such as
lampposts, for continuous diagnostics of the radar state. The
selected approach allows accounting for the external factors, such
as water layer or dirt on the bumper, which can significantly affect
radar performance, but cannot be retrieved with the internal
calibration. The statistical model for RCS of repetitive targets is
considered, and the estimator of the actual radar gain from the
received data is derived. It is demonstrated that observing a few
tens of targets is sufficient to provide a reasonable estimation of
the radar performance within the operational mode.

Keywords — Self-diagnostics, Quality of Service, Automotive
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I. INTRODUCTION

According to International Telecommunication Union

Recommendation ITU-T E.800 ”Definitions of terms related to

quality of service” [1] the quality of service (QOS) is defined

as the totality of characteristics of a telecommunications

service that bear on its ability to satisfy stated and implied

needs of the user of the service. Adapting this to the sensing

tasks means analysis of sensors performance and operations

means dominating user needs and user satisfaction over

formal optimization of sensing performance. In the automotive

application, user needs include safe and convenient motion

from a departure point to the destination. This includes

prevention of accidents and collisions with other traffic

participants, making maneuvers with acceptable/convenient

for passengers levels of acceleration. Within such a mission,

sensors have to provide a reliable level of situation awareness

- detect potential threatening targets at distances, which,

accordingly to approach velocity, will provide enough time for

car’s control computer to decide on preventive measures (e.g.,

slow down and stop; make maneuver/react with a convenient

level of acceleration).

Continuous changes in environmental and sensing

conditions can affect the quality of radar measurements and

make radar data non-reliable. The modern Advanced Driver

Assistant Systems (ADAS) consider radar to be the main

sensors for the surveillance awareness, together with the lidar

and camera. The questions of how good the radar data is and

of how much it can be trusted, then become crucial for the

appropriate data association from multiple sensors.

Radar quality information has been considered in a few

studies, aimed in the qualitative description of meteorological

data [2], [3]. Despite different radar applications, some

concepts of radar quality descriptions are applicable to any

radar sensor. Thus, different factors bearing radar performance

can be classified into global static, local static, global dynamic,

and local dynamic descriptors. The global factors affect all

data points, irrespectively to the range, angle, and velocity

position, while the local factors depend on the target position

and velocity. Static factors refer to the factors constant in

time, while dynamic varies from one observation to another.

With application to the radar state estimation, it implies

that static and dynamic factors should be treated differently.

Estimation and compensation of the static factors are treated

by calibration while accounting for the dynamic factors is

the aim of on-the-fly system state identification, also called

self-diagnostics.
Two main approaches are used to describe the quality of

the radar measurements:

1) Simulation of instrument and propagation errors;

2) Retrieval of errors by comparing the data with the

ground truth.

In the first approach, uncertainty is simulated based on the

error models and detailed knowledge about the sources of error,

while in the second approach no assumptions of the origin

of the error is made. The second approach is used for the

stationary radars, for which the clutter map of the surrounding

objects can be built and used for regular estimation of the

radar quality measurements. With application to online state

estimation of an autonomous car radar, both approaches have

significant limitations. Rapidly changing scene of the radar

makes it impossible to account for all sources of errors and

propose a simple model to estimate radar QOS, neither it

allows making an accurate map of the scene to perform the

second approach.
In this paper, we propose to perform radar self-diagnostics

using repetitive targets along the roads. The proposed

processing allows detecting the degradation of the radar

performance, and so of its QOS, which can be further used

in the ADAS processor for improved data association from

different sensors.
The rest of the paper is organized as follows: in

section II approach of radar self-diagnostics is described

and applicability of different objects as calibrating targets is

analyzed. Then, in Section III the statistical approach for radar

self-diagnostics is proposed. The performance of the method

is evaluated in Section IV via numerical simulations. Finally,

the conclusions are drawn in Section V.
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II. PROBLEM STATEMENT AND SELECTED APPROACH

A. Problem statement

According to the radar equation:

Pr =
PtGprocLiλ

2

(4π)3
· GtGrLe

R4
·RCS, (1)

the power of the received signal Pr depends on the transmitted

power Pt, the target radar cross-section (RCS), the range to

the target R and the wavelength λ. It is also proportional to

the gains of transmitting and receiving antennas Gt, Gr and

to the signal processing gain Gproc.
The losses in (1) are implicitly divided into two groups,

namely internal Li and external Le losses. The internal

losses account for the factors arising in the physical block

of the radar, which can be retrieved with a test signal and

compensated in the data processing. The majority of modern

radars (including automotive ones) schedule time slots for such

testing, thus providing up-to-date estimation of the internal

losses within their operational time, e.g. [4].

The external losses Le, on the other hand, account for the

changes of the propagation medium e.g. due to the variation

of the weather conditions (rain, fog, snow), radom condition

(water, dirt, ice layer on the radom), interference from other

sensors, etc. These factors can significantly affect the radar

performance (see e.g. [5]) but can not be defined a priori. In

order to predict radar performance in its operational mode, or,

in other words, to accomplish radar self-diagnostics, the impact

of the external factors has to be retrieved from the data within

radar operational time.

Assume the radar operates with a fixed set up, then we can

write (1) as:

Pr(i) = G
Lp(Ri)Gt,r(θi)

R4
i

RCSi = Gg2(Ri, θi)RCSi, (2)

where G represents the global factors in (1) (up to a constant).

The local factors are considered via the function g(R, θ),
which depends on the i-th target location Ri and θi (in 2D

polar coordinates) via the antenna pattern Gt,r(θi), prorogation

function Lp(Ri) and range relation (R−4
i ).

Given the model (2), radar self-diagnostics can be

established as an estimation of the global factors G from the

radar measurements and comparing it to that of well-operating

radar G0 via:

Q = h

(
G

G0

)
, (3)

where h (·) is some non-decreasing function. The estimation

of the local factors can provide more insight into the radar

performance, hence it would require performing the approach

described below in a few non-overlapping subspaces of

the range/angular domain simultaneously. The presence of

calibrating targets in each subspace is difficult to ensure.

The conventional calibration procedure consists of

estimation of parameter G, assuming all the other terms in

(2), namely the function g(R, θ), target location (Ri, θi) and

its RCS, are known.

B. Calibrating targets
A standard calibrating target (corner reflector, sphere, metal

plate) has deterministic RCS, which for a given frequency

can be found analytically, depending on its shape and size

[6]. The application of corner reflectors, Luneberg lenses and

phase-conjugate mirrors for automotive radar application, has

been recently discussed in [7], [8]. Such reflectors can be

installed into the existing road infrastructure (e.g. as a cat′s
eye pavement markers [7]) and provide high RCS with low

variation over wide observation angles. The major limitation

of such targets is their installation and maintenance cost [8].
An alternative solution, considered in this paper, consist

of using repetitive objects, already present in the road

infrastructure as calibrating targets for radar self-diagnostics

within operational time. The most often appearing targets along

the roads are the traffic signs. The complicated geometrical

shape of a traffic sign implies sufficient variation of its RCS

with the aspect angle [9], [10], which has to be accounted if

such targets are considered for self-diagnostics. The alternative

solution is to use lampposts installed along the roads as

calibrating targets. The lampposts have simple geometrical

shapes at the observed elevation angles (cylinder circle or

prism with octagonal base) and regular appearance along the

highways (the distance between adjacent lampposts in the

surroundings of Delft is 30-70 m, measured by Google maps).
Even though lampposts have simple shapes, they are

not designed for radar calibration. Therefore, their RCS can

vary from one to another due to mass production tolerances,

installation etc. In order to account for this phenomenon, we

propose to consider the RCS of such targets, to be used for

radar self-calibration, not as deterministic values, but as a

random quality, whose PDF is a priori known (or has been

measured beforehand).
In this study, we consider that one class of targets is used

for radar self-diagnostics, and their locations are known by

a digital map (see e.g. [11]). We assume that RCS of the

targets in this class follow non-central chi-squared distribution

with two degrees of freedom, which provides sufficient fidelity

for target RCS variation and encompasses Swerling models as

particular cases [6] (approximately for Swerling III/IV target

[12]).

III. STATISTICAL APPROACH FOR RADAR

SELF-DIAGNOSTICS

According to the definition above: RCS ∼ σ2
Aχ

2
2(
A2

0

σ2
A
),

which implies that the observed target magnitude follows Rice

(Rician) distribution |a| ∼ Rice(A0, σ
2
A), where A0 is the

magnitude of the non-fluctuation target response and σ2
A is the

variance of the disperse component. Assume the calibrating

target with index i is detected by the radar at the location

(Ri, θi). In the noise-limited scenario, the complex received

signal (after pre-processing) in the range-angular cell with the

target i is given by:

ỹi =
√
Gg(Ri, θi)ae

iφ + ni =
√
Gg(Ri, θi)A0e

iφ

+
√
Gg(Ri, θi)nA + ni = yie

iψ,
(4)
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where φ, ψ ∼ U(0, 2π) are random phase terms, ni is zero

mean white Gaussian noise ni ∼ CN (0, σ2
n) with the power

being estimated from the data or defined as σ2
n = kBT0FB [6],

with kB being Boltzmanns constant (1.38× 1023 watt-sec/K),

T0 — the standard temperature (290 K), F — the noise figure

and B — the instantaneous receiver bandwidth.

Accordingly, the magnitude of the observed signal yi =
|ỹi| follows Rice distribution with parameters:

yi = Rice
(
Cg(Ri, θi)A0, C

2g2(Ri, θi)σ
2
A + σ2

n

)
, (5)

where C =
√
G. Define simplified notations ui = g(Ri, θi)A0

and vi = g2(Ri, θi)σ
2
A, then the likelihood function for

N independent measurements of calibrating targets y =
[y1, . . . , yN ]T is given by:

Λ (y|C) =
N∏
i=1

f (yi|C) =
N∏
i=1

yi
C2vi + σ2

n

· exp
(
− y2i + C2u2i
2 (C2vi + σ2

n)

)
I0

(
yiCui

C2vi + σ2
n

)
,

(6)

where In(·) is the modified Bessel function of the first kind

with order n. Given the data model, the parameters C (or

equivalently G) should be estimated from the observed data.

Note that the observed data set y is described as a

mixture of Rice distributions with the parameters, given in (5),

therefore C cannot be extracted by the method of moments or

standard maximum likelihood estimator of the Rice distribution

parameters [13].

Therefore, we perform maximum likelihood estimation of

Ĉ = argmaxCΛ (y|C) from (6). It is obtained as non-zero

solution of:

C ·
N∑
i=1

u2iσ
2
n + vi

(
2viC

2 + 2σ2
n − y2i

)
(C2vi + σ2

n)
2

−
N∑
i=1

B

(
yiCui

C2vi + σ2
n

)
uiyi

(
σ2
n − C2vi

)
(C2vi + σ2

n)
2 = 0,

(7)

where B(x) = I1(x)
I0(x)

can be approximated by B(x) ≈ e−
1
2x

for high values (x > 5), which is equivalent to dominant

coherent target component and high SNR. The solution

has to be performed numerically. We implemented it via

NewtonRaphson method.

Consider two special cases: constant RCS target model

(Swerling 0) and diffuse target model (Swerling I/II). Swerling

0 targets has σA = 0 and vi = 0, ∀i = 1, . . . , N , which allows

to simplify (7) to:

Ĉ =

∑N
i=1B

(
yiĈui

σ2
n

)
uiyi∑N

i=1 u
2
i

. (8)

For high SNR targets B (x) ≈ 1. If all the measurements are

collected from observing the same target at the fixed location,

then ui = const, ∀i and the procedure degenerates to the

standard calibration with averaging of multiple measurements.
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Fig. 1. Measured received power of calibrating targets, aligned with the range
dependency for well-operating radar (G = G0) and for the current state
(G = G0/2)

In case of the diffuse target model (Swerling I/II), A0 = 0
and ui = 0, ∀i = 1, . . . , N , which gives the estimation of C2:

Ĉ2 =

N∑
i=1

y2i vi − 2σ2
nvi(

Ĉ2vi + σ2
n

)2

/
N∑
i=1

2v2i(
Ĉ2vi + σ2

n

)2 . (9)

Given the estimation of C (or equivalently C2 = G) from

the data, statistical self-diagnostics consists of comparing it

to the true value by means of (3). It is assumed that the

radar parameters are changing slowly with time. Therefore,

the estimation of Ĉ is obtained from tens or hundreds of

calibrating targets and multiple measurements of each target

with the predefined update rate of the radar.

IV. SIMULATIONS

For the simulation herein we assume an automotive radar

operating at fc = 76.5 GHz with an array of P = 12
antennas with a half-wavelength spacing between each other.

The coherent bandwidth is B = 150 MHz, which provides

δR = 1 m and the other parameters in are set in such a way

that Pr(Rmax)/σ
2
n = 15 dB for RCS0 = 1 m2 by (2) for

Rmax = 200 m. Moreover, for the considered distance, we

assume negligible attenuation in the signal in the air Lp(Ri)
for the distances R ≤ Rmax (according to [6], at fc attenuation

in air is less than 1 dB/km for dry conditions and reasonable

rain rates).

The simulator consists of the following blocks:

• Simulation of the scene with the calibrating targets on

the right side of the car path with the distance of

d ∼ U(20, 30) m between them along the path and at

displacement b = 10 m to the right from the path. The

targets are assumed isotropic, RCS varies only from one

target to another;

• The car is moving with v0 = 30 m/s and all the

calibrating targets detected within θ ∈ [−60, 60] deg and

R ≤ Rmax are used for calibration;

• Targets RCS ∼ σ2
Aχ

2
2(
A2

0

σ2
A
) and so |a| ∼ Rice(A0, σ

2
A).

Herein we set A0 = 1 and σA = 0.1.

• It is assumed that calibrating targets are confirmed by

the digital map, which includes markers of such targets;
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Fig. 2. Estimation of Q vs the number of calibrating targets
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Fig. 3. Estimation of Q vs the distribution of target RCS

• Self-diagnostics is performed by estimating C from (7)

and the quality factor is estimated by Q =
√
G/G0

(other metrics can be preferable to bound it to Q ≤ 1).

An example of the received power from the observed

calibrating targets as the function of their range is

demonstrated in Fig. 1 for L = 1000 detection of the targets

and g(R, θ) = R−2 (angle dependence is omitted for better

visualization). Herein Q = 0.5 was set and the estimation

obtained with (7) converges to the true value and shows about

30% degradation of the maximum detectable range, R̂max.

The evaluated Q̂ or the adjusted maximum range will be

delivered to the ADAS, where it can be considered for situation

awareness or fusing radar data with information from the other

sensors.

The impact of the number of calibrating targets, considered

for the radar self-diagnostics is demonstrated in Fig. 2 for the

targets and radar parameters, mentioned above, averaged over

100 test. The result demonstrates the decreasing variance of

the estimation Q̂ with more targets, used for calibration.

The impact of the target PDF on the estimation of Q is

evaluated in Fig. 3 for N = 100. Notably, the variance of the

estimator decreases when the target RCS is known (σA = 0)

and diverges when σA increases. However, the variation is only

of a few percents for large variations of the targets PDF.

V. CONCLUSION

In this paper, we proposed a method for continuous

evaluation of the automotive radar state by evaluating the

responses for repetitive objects along the road. The proposed

approach allows accounting for the slow changes of the radar

state within its operational time, to be considered in the further

stages of data processing. Given a few tens of calibrating

targets, the estimated radar gain is within ten percent from

the actual one, even with a moderate variation of the targets

RCS. The future work will be devoted to the extension of the

approach for more general classes of distributions for targets

RCS and also accounting for a few classes of targets embedded

in the road infrastructure.
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