This demonstration presents the representation of the arbitrary
fully polarized electromagnetic wave in the polarization basis $(\theta, \tau)$:
\begin{eqnarray}
{\bf{\dot E}} = {\dot E}_1 {\dot {\bf{e}}}_1(\theta,\tau) +
{\dot E}_2 {\dot {\bf{e}}}_2(\theta+\pi/2, -\tau)
\end{eqnarray}
where $\bf{\dot E}$ is the wave with arbitrary polarization (blue),
$\dot E_1$ - complex amplitude of the ortihogonal polarization basis
component's ${\dot {\bf{e}}}_1(\theta,\tau)$ (red),
${\dot E}_2$ - complex amplitude of the ortihogonal polarization basis
orthogonal component's ${\dot {\bf{e}}}_2(\theta+\pi/2, -\tau)$ (magenta).
Here $\theta$ is the angle of orientation of the first elliptical component
of polarization basis, which has the ellipticity angle $\tau$.
In the polarization basis $(\theta, \tau)$, the Jones vector of the wave can be written:
$ {\bf{\dot E}} = \left[ {\begin{array}{*{20}{c}}
{{E_1}{e^{j{\phi _1}}}}\\
{{E_2}{e^{j{\phi _2}}}}
\end{array}} \right] $
Polarization Ellipse | |
Ey
|
|
Ex |